
Developing a Secure Distributed OSGi Cloud
Computing Infrastructure for Sharing Health Records

Sabah Mohammed, Daniel Servos, and Jinan Fiaidhi

Department of Computer Science, Lakehead University,

Thunder Bay, ON P7B 5E1, Canada
{sabah.mohammed, dservos, jfiaidhi}@lakeheadu.ca

Abstract. Cloud Computing has become an emerging computing paradigm
which brings new opportunities and challenges to overcome. While the cloud
provides seemingly limitless scalability and an alternative to expensive data
center infrastructure, it raises new issues in regards to security and privacy as
processing and storage tasks are handed over to third parties. This article
outlines a Distributed OSGi (DOSGi) architecture for sharing electronic health
records utilizing public and private clouds which overcomes some of the
security issues inherent in cloud systems. This system, called HCX (Health
Cloud eXchange), allows for health records and related healthcare services to
be dynamically discovered and interactively used by client programs accessing
services within a federated cloud. A basic prototype is presented as proof of
concept along with a description of the steps and processes involved in setting
up the underlying security services. Several improvements have been added to
HCX including a Role-Based Single-Sign-On (RBSSO).

Keywords: Cloud Computing, Distributed OSGi, Cloud Security, Electronic
Healthcare Records.

1 Introduction

“Cloud Computing” has become a popular buzzword in the web applications and
services industry. Cloud computing provides a large pool of easily usable and
accessible virtualized resources [1]. These resources can be dynamically reconfigured
to adjust to a variable load, allowing for optimum resource utilization. Recent cloud
offerings from vendors such as Amazon, IBM, Google, Oracle, Microsoft, RedHat,
etc., have created various public cloud computing services where organizations are no
longer required to own, maintain or create the infrastructure or applications that
power their business and online presence. Cloud computing provides the potential for
those in the healthcare industry, including patients, physicians, healthcare workers
and administrators, to gain immediate access to a wide range of healthcare resources,
applications and tools. For hospitals, physician practices and emergency medical
service providers, the lowered initial investment and the elimination of IT costs
offered by cloud computing can help overcome the financial barriers blocking the
wide adoption of EHR systems [2]. Along with potential cost savings and scalable
infrastructure, cloud computing brings with it new security and privacy issues that

need to be addressed. When utilizing a cloud based platform, potentially sensitive
informat ion must be transmitted to and stored on a cloud provider’s infrastructure. It
is left to the cloud provider to properly secure their hardware in frastructure and isolate
customer’s processing and storage tasks. This transfer of trust may be acceptable in
most cloud use cases, however, in industries that must comply with data privacy laws
such as PIPEDA [3], HIPA [4] and HIPAA [5], allowing sensitive informat ion to be
processed or stored on a public cloud may not be directly feasible. Th is article
continues work on the Health Cloud Exchange (HCX) [6] system to provide security
measures for protecting shared health records (EHRs) over the cloud. In particular,
this article presents a lightweight Roll Based Single-Sign-On (RBSSO) authentication
service for authenticating users securely on our HCX cloud infrastructure. Our
RBSSO prototype extends the Apache CXF reference Distributed OSGi (DOSGi)
implementation to operate securely on a cloud shared by potentially untrustworthy
cloud users and providers.

2 Sharing EHRs over the Cloud

Sharing EHRs over the Internet countenances two major obstacles to break the barrier
of the isolated digital silos and to enable interoperability: (1) availability of unified
EHR specification and (2) the availability of a suitable centralized and secure
collaboration infrastructure. Both constraints require the availability of measures and
standards.

2.1 EHR Specification

Related to the EHR specifications, there are several notable EHR standards for
storing, processing and transmitting patient healthcare records such as HL7 CDA [7],
Continuity of Care Record (CCR) [8] and HL7 Continuity of Care Document (CCD)
[9]. The CCR and CCD standards have gained wide usage and popularity among
healthcare communit ies because of the support provided by visible IT vendors’
products including Google Health 1, and Microsoft’s HealthVault 2. The CCR and
CCD standards represent an XML based patient health summary which contains
various sections such as patient demographics, insurance informat ion, diagnosis,
medications, allergies and care p lan in a platform independent format that may be
read by any XML parser. For this reason we have chosen to adopt the CCR and CCD
standards as an intermediate format between EHR systems in our HCX design.

2.2 Cloud Challenges

Cloud based computing infrastructure offers organizations a pay-per-use based virtual
infrastructure solution made dynamically scalable by the ability to spawn and destroy
virtual machine instances on demand. This allows virtual servers to be created as

1 www.google.com/health/
2 www.healthvault.com

needed to meet current demand and then scaled back when strain on the system is
reduced, lowering resource usage and cost. This scalability provides an ideal
infrastructure for deploying a large scale but affordable system that connects end
users, providers and isolated EHR systems. Adopting certain cloud computing
technologies suitable for sharing sensitive informat ion such as EHRs remains one of
the challenges that vendors and researchers try to answer. Some of these security and
privacy issues include:

• Confidentiality: Protecting cloud based storage and network transmissions from possible
unwanted access by cloud providers or data leakage to other cloud users.

• Auditability: Maintaining logs of users’ actions with the system and ensuring that no
part of the system has been tampered with or compromised.

• Security: Preventing user credentials, which may be used for multiple services on and off
the cloud from being obtained by untrusted parties including the cloud provider or other
cloud users?

• Legal: Complying with data privacy laws that may be in effect in given geographical
regions (eg. PIPEDA, HIPA, HIPAA, etc).

While many solutions for these issues exist for traditional systems, public cloud
infrastructure removes control of the physical infrastructure that makes it possible to
ensure a cloud provider properly secures their services and is not performing any
potentially malicious activities. It may seem unlikely that large public cloud operators
would intentionally violate their user’s privacy, but external factors in some regions
(such as legal pressure from local governments, e.g. USA PATRIOT Act 3) may force
discloser of sensitive information. Hardware based solutions, such as Trusted
Platform Module (TPM) 4, that would normally provide protection for a remote system
are difficult to implement in cloud environments due to instances being created on a
number of physical servers that share the same hardware and lack of support from
major cloud providers. Additionally, cloud computing has several challenges related
to taking full advantage of the scalability gained from cloud infrastructure that limit
potential solutions including:

• Bottlenecks: The cloud may provide seemingly limitless scalability for virtual server
resources and storage, but any connections to systems outside of the cloud or lacking the
same scalability quickly become a new bottleneck for the system. For example if multiple
machine instances are spawned to meet an increase in demand but all connect to the same
database or authentication backend provided by the same server, a bottleneck will be
formed that will limit the scalability of the whole system.

• Distributed Design: While cloud computing is distinct from traditional distributed
computing, many of the same concepts apply and must be considered in the design of a
cloud application or platform. Cloud applications must be built to offer their services
from multiple machine instances distributed in the same cloud rather than a traditional
single server to client architecture.

• Volatile Storage: Most cloud infrastructure solutions (such as Amazon’s EC2) do not
provide persistent storage by default to their machine instances. Applications built upon
such infrastructures need to take into account this static nature in their design and use
additional services or solutions (such as Amazon’s S3 or EBS) for permanent storage.

3 http://en.wikipedia.org/wiki/USA_PATRIOT_Act
4 http://en.wikipedia.org/wiki/Trusted_Platform_Module

• Dynamic IPs: In most cases when cloud instances are launched, a public IP address is
dynamically assigned. While this may be selected from a list of static IP addresses,
autonomous cloud systems are often used which automatically create and destroy
instances each obtaining an unused address when initialized. This can create issues for
traditional systems that expect static or unchanging addresses for servers.

3 Designing a Secure Cloud for Sharing EHRs

This section introduces our proposed architecture for securely sharing CCR/CCD
patient records over a public or private cloud. The Health Cloud Exchange (HCX)
system provides a dynamic and scalable cloud platform solution built on DOSGi for
discovering, and providing cloud based health record services. The Role-Based
Single-Sign-On (RBSSO) system provides a means of authenticating users from
various organizations with these services that keeps users’ credentials off the public
cloud and isolated while maintain ing the systems scalability.

3.1 Health Cloud Exchange (HCX)

Our proposed HCX design provides three primit ive DOSGi service interfaces:
EHRServ ices, AuditLog and EHRClient. Any number of services implementing these
interfaces may run within the same cloud and are registered upon execution with a
central service registry for dynamic service discovery. Multiple instances of the same
service may be run simultaneously, balancing the load between them. A Serv ice

Fig. 1: An Overview of the HCX Architecture
1. Service controller starts and initializes machine instances for HCX services and
the service Registry. 2. HCX servicers register them self with the service registry.
3-4. Service consumer queries service registry for a listing of available HCX
services. 5-6. Service consumer sends a request to a HCX service to view, or
update an EHR and receives an appropriate response. Dotted lines indicate
interactions transparent to the service consumer.

Controller which resides in a trusted network outside of the public cloud is used to
start and stop machine instances on the cloud that provide HCX services based on the
current level of demand as well as load instances with their initial data. These
interactions can be seen in Figure 1.

EHRServices
EHRServ ices are dedicated to sharing CCR and CCD formatted health records with
consumers. Consumers query EHRServices for either a listing of availab le health
records for which they have access to or a specific record using the shared
EHRServ ice interface implemented by all HCX services that share records. The
EHRServ ice interface is implemented by three main derivative services called
RecordStore, EHRAdapter, and EHRBridge. RecordStores are databases of health
records stored on the cloud in a relational database or other cloud storage (eg.
Amazon’s S3 or EBS). EHRAdapters are interfaces to existing isolated EHR systems
located on the same cloud and EHRBridges are interface to external EHR systems
operating outside the cloud. This allows for loose coupling between the consumers
and EHRServices as consumer need only know about the standard EHRServ ice
interface and the location of the service registry to use any EHRService that becomes
available on the cloud, including bridges to other systems outside of the cloud. This
interaction can be seen in Figure 2.

AuditLog
The AuditLog service is used to keep and store an uneditable audit log of all actions
that have been performed on the EHRs and services, including views, changes and
removal of records. These logs keep a permanent record of user’s actions that can be
used as evidence in case an abuse of a user’s credentials occurs. The AuditLog service
is called direct ly from EHRServices (as well as any other HCX service that may

Fig. 2: Service consumer and EHRService
interactions. Dotted arrows are interactions
transparent to the consumer, for which all three
services offer the same interface but return records
from different locations.

Fig. 3: AuditLog interactions. 1. Client/Service
consumer makes a request on a service. 2. The
service sends the RequestToken, AuditToken and
request summary to the AuditLog service. 3. The
AuditLog service stores a log entry for the request
on cloud storage.

require a detailed audit trail) and is not accessible to normal users directly. The
interface of the AuditLog has a single operation which takes the user’s AuthToken,
RequestToken (see section 3.2), and a summary of the users request upon the service.
If the AuthToken and RequestToken are valid, the AuditLog service adds an entry to
its audit log which is stored on persistent cloud storage. Figure 3 shows the interaction
between an EHRServ ice and an AuditLog service.

EHRClient
The EHRClient service is a cloud application and web interface which allows users of
the system to view and update records through their browser rather than through an
application implementing an EHRService consumer. The EHRClient contains both a
service which controls the web interface and an EHRClient consumer which connects
to other HCX record services. User authentication is still perfo rmed through the
RBSSO system described in section 3.2.

3.2 Role-Based Single-Sign-On (RBSSO)

To secure HCX from access by undesired users, a roll based authentication service is
required. Due to the distributed nature of the HCX architecture, traditional
authentication methods are not appropriate as they would require duplication of
authentication mechanis m and user databases or the creation of a single point failure
resulting in a system bottleneck. Additionally, users will likely need to make a request
on mult iple HCX services during a single session. Forcing users to provide credentials
when accessing each would be an unreasonable burden, as well as inefficient if each
request needed to be authenticated with a separate service. Finally it may be desired to
not store a user’s credentials and information directly on the cloud. A possible
solution to these problems is to develop a single-sign authentication service, in which
users first authenticate with a trusted party to receive an authentication token that

Fig. 4: RBSSO Protocol Fig. 5: (a) AuthRequest and (b) ServiceToken

enables access to services that trust the same party. Several technologies currently
exist which enable single-sign on capabilities, such as Kerberos [10], SAML [11], and
X.509 [12]. However, the nature of the cloud and architecture of HCX make
traditional solutions complicated as new machine instances are spawned and
destroyed automatically based on demand and have no persistent memory to store
public/private key pairs or cert ificates. Additionally, authentication servers become a
scalability bottleneck when run outside the cloud (which may be necessary if no
trusted party exists in a cloud environment). This makes any security service that have
a large number of requests between services and authentication servers unreasonable
or even impossible if the server is made available only to a private network to which
the client is part. To solve these problems and provide user rolls which are lacking in
most existing single-sign solutions, we have developed a lightweight roll based
single-sign in protocol called RBSSO (Roll Based Single-Sign On) for cloud based
services which may not have direct access to authentication servers. RBSSO is
loosely based on X.509 single-sign on and aims to minimize the number of request on
an authentication server, support a large number of authentication methods, supports
sessions spanning multiple services and be relatively easy to implement and
understand.

The Protocol

Figure 4 displays the interactions involved in the RBSSO protocol. Each client is
assumed to be provided with the public signing (AKsigpub) and encryption
(AKencpub) keys for their organizations authentication server, as well as the public
signing key for the service controller (SCKsigpub). Authentication servers contain or
access an organization’s user credentials and are located on their private trusted
networks which need only be accessible to their clients. Service controllers in itialize
the virtual machine instances that offer HCX services and are located off the pubic
cloud. The protocol for RBSSO follows the proceeding steps, as shown in Figure 4:

1. The service controller in itializes machine instances with a ServiceToken (Figure
5b), a list of HCX services the instance will p rovide, a list of trusted authentication
servers and their set of public keys, a list of globally black listed users and the
instances private key, SKpri.

Fig. 6: (a) AuthToken, (b) RequestToken, (c) SessionKey

2. The HCX consumer authenticates with their organizations authentication server by
generating a secret key CKsec and an AuthRequest (Figure 5a). The AuthRequest,
containing the user’s credentials, roll they wish to activate and a public client key
from the client public/private key pair created when the client program is
initialized, is then transmitted to the authentication server.

3. The authentication server decrypts the AuthRequest using AKencpri and CKsec,
validates the user’s credentials, and checks that the time stamp and request id are
acceptable. Credentials may be validated against a local database of user
credentials or existing authentication infrastructure on the same trusted network
(eg. LDAP).

4. Once the user is validated, the authentication server issues and signs an
AuthToken (Figure 6a) with AKsigpri for the client’s session with the HCX
services. This transmission is encrypted with CKsec to protect the user’s privacy
(i.e . so the user may not be identified by outside observers).

5. Before the service consumer makes a normal request upon a service it first
requests the service’s ServiceToken from the instance on which it resides. The
service consumer then validates the service controller’s signature using SCKpub
and ensures that the service is listed in the service listing and is connecting from
the stated IP or hostname.

6. The consumer may now authenticate and make a request upon any HCX service
on the instance by generating the secret session key SEKsec and using it to
encrypt its AuthToken, the request and a newly generated RequestToken (Figure
6b) together. SEKsec is appended with a delimiter and random number and
encrypted with SKpub (obtained from the ServiceToken) (Figure 6c). The
ciphertexts are appended and transmitted to the service.

7. The service decrypts SEKsec using SKpri and decrypts the request, RequestToken
and AuthToken using SEKsec. The service then proceeds to validate the
signatures contained in AuthToken and RequestToken using AKsigpub and
CKpub (from the AuthToken) and validate the fields they contain (time stamp has
not expired, etc). If valid SEKsec and the AuthToken are temporarily stored for
future requests with the instance until the session expires.

8. If the user has a roll active which allows the request to be performed on the
service, the service complies with the request and provides the appropriate
response. All further communications between the consumer and service for the
length of the session will be encrypted using SEKsec. Subsequent requests on any
service on the instance need only to provide a RequestToken and the content of
the request encrypted with SEKsec until the session expires.

4 Implementation Details

4.1 HCX

Two major open source projects were used in our implementation to provide private
cloud as a service infrastructure and service discovery: Eucalyptus5 and the Apache
CXF DOSGi 6 respectively. Additionally, Amazon’s EC2 and S37 cloud infrastructure
services were used for public cloud storage and computing. Compared to other private
cloud frameworks such as Nimbus8 and abiCloud9 Eucalyptus was chosen for its
stronger community support, detailed documentation and benefit of coming
prepackaged in the Ubuntu Enterprise Cloud 10 Linux distribution. Apache CXF
DOSGi was chosen as it is the reference implementation for remote OSGi services
and discovery. The distributed nature of DOSGi allows for a loose coupling between
services and consumers through the uses of a service discovery mechanism for
finding the location and type of services currently being offered in a given grouping.
This is accomplished through the use of an Apache ZooKeeper11 based cluster, in
which a central service reg istry enables simple and scalable service look up and
discovery while keeping the advantages of a distributed system (e.g. not rely on a
single point of failure). Serv ice consumers are notified of new services becoming
available o r going offline (a common occurrence in a cloud based setting) and are
able to automatically use or discontinue use of a given service. The hardware
infrastructure of the private cloud consisted of 15 identical IBM xSeries rack mounted
servers connected to each other via a 1000 Mbit/s switch. Of the 15 servers, 14 were
designated as Eucalyptus Node controllers which ran the Xen based virtual mach ine
instances, while the Cloud Controller, Walrus (S3 Storage), Storage Controller and
Cluster Controller services were installed on the remaining server to provide
scheduling, S3 based bucket storage, EBS based storage and a front end for the cloud.

5 http://www.eucalyptus.com/
6 http://cxf.apache.org/
7 http://aws.amazon.com/
8 http://www.nimbusproject.org/
9 http://abicloud.org
10 http://www.ubuntu.com/business/cloud/overview
11 http://hadoop.apache.org/zookeeper/

Fig. 7: Xen Images (OSGi and ZooKeeper) to Support DOSGi on the Cloud.

Adapting DOSGi for use on the cloud required the creation of two Xen based
mach ine images. An image was required to host a standard OSGi implementation
(such as Eclipse Equinox, Apache Felix or Knopflerfish) upon which the Apache
CXF DOSGi, HCX bundles would be run to provide HCX’s services. A second image
was required to host ZooKeeper servers for service registry and discovery. As demand
increases on a particular service addit ional OSGi machine instances may be run to
load balance request between mult iple instances of that service. As demand increases
on the service registry, more ZooKeeper machine instances may be run to add
additional ZooKeeper servers to the cluster. This set-up is shown in figure 7.

4.2 RBSSO

To evaluate the performance of the RBSSO protocol a p rototype of the Authentication
Server and Client where created using standard Java TCP sockets. The protocol was
expanded to include length bytes to make processing the message easier. 128bit AES
encryption was used for the symmetric encryption of the AuthRequest body and
AuthToken body. 3072bit RSA encryption was used for the asymmetric encryption of
the AuthRequest tail and the signature on the AuthToken. SHA-256 was used for
generating hashes for the AuthRequest.
Two controls, SSL and Kerberos (a popular SSO system), where used to compare the
performance of the protocol against. For the first control an Authentication Server
was created that replaced the encryption of the body and signature of the AuthRequest
with an SSL connection (the tail containing CKsec and the token hash where removed
from the SSL implementation). Secondly the RBSSO protocol was also compared
against the performance of a Java based Kerberos client and the MIT Kerberos 512
implementation which ret rieved a ticket granting ticket and a service ticket (somewhat
equivalent to an AuthToken in RBSSO). The performance of all three protocols
(measured in average time per request) was measured on both a private isolated local

12 http://web.mit.edu/kerberos/

Fig. 8: Average time (in milliseconds) requried to complete and verify an authencation
request using each protocol. Based on 10,000 requests.

area network and over a noisier internet connection. Each protocol was tested with
10,000 authentication requests for each network in sequential runs of 1000 requests.
The results on these tests are shown in Figures 8, 9 and 10.
The RBSSO protocol performed approximately 38% faster on average than the SSL
implementation on the local area network and 66% faster over the internet connection.
This is likely a result of the decreased number of request involved the RBSSO
protocol (no handshake is required and only a single request in made containing the
AuthRequest) and explains the difference between the local and internet connections
(the cost per request being higher on the connection with increased latency). Similarly
RBSSO performed 25% faster than Kerberos over an internet connection but
performed 21% slower over a local area connection. This is also likely a result of the
number of requests, Kerberos requiring a connection to both to a Kerberos
authentication server and a ticket granting server before it can make a request on a
service.

5 Conclusions

Fig. 9: Average time (in milliseconds) requried to complete and verify
an authencation request over the internet and LAN. Based on 1000
requests per run.

The HCX system described in this paper provides a distributed, modular and scalable
system for sharing health records over the cloud. This system is made secure through
the extension of the RBSSO protocol also presented in this paper. We showed how to
build and integrate a composite application using the Apache CXF DOSGi open
source framework for sharing CCR/CCD EHR records, and how the distributed roll
based single-sign on can be accomplished using the presented RBSSO protocol. The
developed HCX prototype comprising of composite modules (distributed across the
cloud) can be integrated and function as a single unit. HCX allows adaptors and
bridges to be created for existing EHR systems and repositories allowing records to be
exchanged through a standard interface and CCR/CCD record format. This is
accomplished by building DOSGi based services and consumers made scalable
through the cloud. The RBSSO protocol allows users to sign in once with their home
organization and transparently have a session open with all HCX services for which
the user’s rolls give them access. There are several tasks left to our future research
including providing h igher in formation and data privacy fo r cloud storage thus
blocking access from potentially untrustworthy cloud providers, providing in-depth
details of the role based components of RBSSO, protecting cloud machine instances
from tampering, and fully evaluating the performance of RBSSO in realistic cloud
settings.

References

[1] Vaquero, L. et. al., "A break in the clouds: towards a cloud definition," ACM SIGCOMM
Computer Communication Review, Vol. 39, pp. 50-55, (2008).

[2] Urowitz, S. et al., "Is Canada ready for patient accessible electronic health records? A
national scan," BMC Medical Informatics and Decision Making, 8(1), p. 33, Jul. (2008).

[3] PIPEDA Personal Information Protection and Electronic Documents Act, [Online]
http://laws.justice.gc.ca/en/P-8.6/index.html, (2000)

[4] Ontario Statutes and Regulations, “Personal Health Information Protection Act,” S.O.
2004 Ch. 3 Schedule A, (2004).

[5] 104th United States Congress, “Health Insurance Portability and Accountability Act
(HIPAA)”, P.L.104-191, August 21, 1996.

[6] Mohammed, S., Servos, D. and Fiaidhi, J. “HCX: A Distributed OSGi Based Web
Interaction System for Sharing Health Records in the Cloud,” in IEEE/WIC/ACM
International Conference on Web Intelligence and Intelligent Agent Technology. (Toronto,
Canada, August 31 – September 3)(2010).

[7] Health Level Seven International. “Health Level Seven v3.0”. [Online].
http://www.hl7.org

[8] ASTM Subcommittee: E31.25, "ASTM E2369 - 05e1 Standard Specification for
Continuity of Care Record (CCR)," ASTM Book of Standards, vol. 14.01, 2005.

[9] Care Management and Health Records Domain Technical Committee, “HITSP/C32:
HITSP Summary Documents Using HL7 Continuity of Care Document (CCD)
Component,” Healthcare Information Technology Standards Panel, Version 2.5, (2009).

[10] Neuman, B.C. et. al., “Kerberos: An authentication service for computer networks,” IEEE
Communications Magazine, vol. 32, pp. 33 – 38, (1994).

[11] OASIS Open, “Assertions and Protocols for the OASIS Security Assertion Markup
Language (SAML) V2.0 – Errata Composite,” December 2009.

[12] Housley, R. et. al., “Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile,” RFC3280, (2002).

	2.1 EHR Specification
	3.1 Health Cloud Exchange (HCX)
	EHRClient
	3.2 Role-Based Single-Sign-On (RBSSO)
	4.1 HCX
	4.2 RBSSO

